

Effects of insect pests on CO₂ emissions from forest soils

Maren Grüning¹, Franziska Germershausen¹, Annett Reinhardt¹, Hermann Jungkunst², Anne Arnold ^{1,3} ¹Georg-August University Göttingen, Soil Science of Temperate Ecosystems ²University Koblenz-Landau, Geoecology and Physical Geography ³NABU Waldinstitut Blankenburg

BACKGROUND AND AIMS

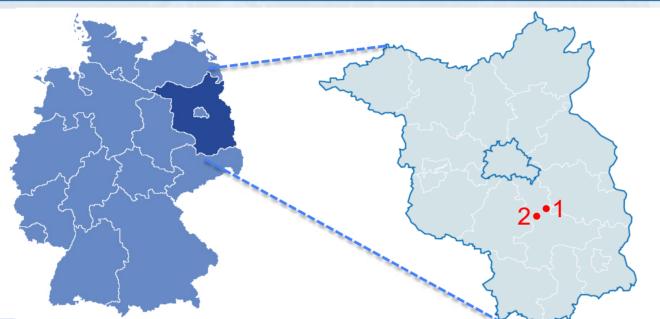
Background: Phytophagous insects have a significant effect on the C and N balance in forest ecosystems (RITCHIE et al. 1998, FROST & HUNTER 2007).

Input changes of litter quality and quantity can have an indirect effect on the soil organic matter decay (CHAPMAN et al. 2003), which results in an altered nutrient cycling (FROST & HUNTER 2004; LE MELLEC et al. 2009, BELOVSKY & SLADE 2000).

Aim: Apply a quantitative approach on the effects of frass litter compared to leaf litter on the soil CO₂ emissions based on field and experimental observations. Therefore, measurements of CO₂ were carried out according to the frass activity of the insects (field study). Additionally, a soil microcosm experiment was conducted to measure the soil reaction indicated by CO_2 flows under different organic matter supplies.

Hypothesis: Frass litter significantly enhances the soil CO₂ emissions compared to leaf litter.

Forest ground littered with faeces from pine-tree lappet (Dendrolimus pini L.) (photo: M.Grüning)

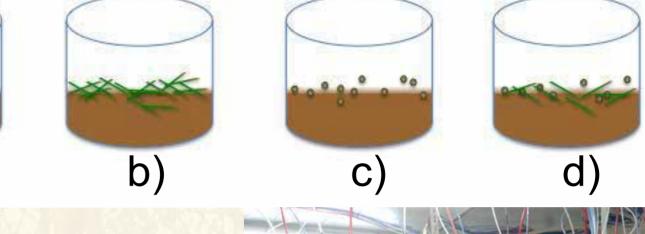

MATERIAL & METHODS

Field study

Several sampling dates between 2013 and 2014 in a scots pine forest (pinus sylvestris L.) featuring nun moth (Lymantria monacha L.) infestation

Measuring chamber (n=5/plot) (photo: M. Grüning)

Research area: 1=infested in Teupitz (3 plots), 2=control (3 plots) in Märkisch Buchholz (Brandenburg)


Measurements of the accumulation of soil CO₂ within chambers on the Ah layer for flux calculation according to the method of JUNGKUNST et al. (2004a)

Microcosm experiment Determination of the CO₂ flux of (a) pure mineral soil (Ah) compared to (b) mineral soil covered with pine needle litter, (c) frass litter of pinetree lappet (Dendrolimus

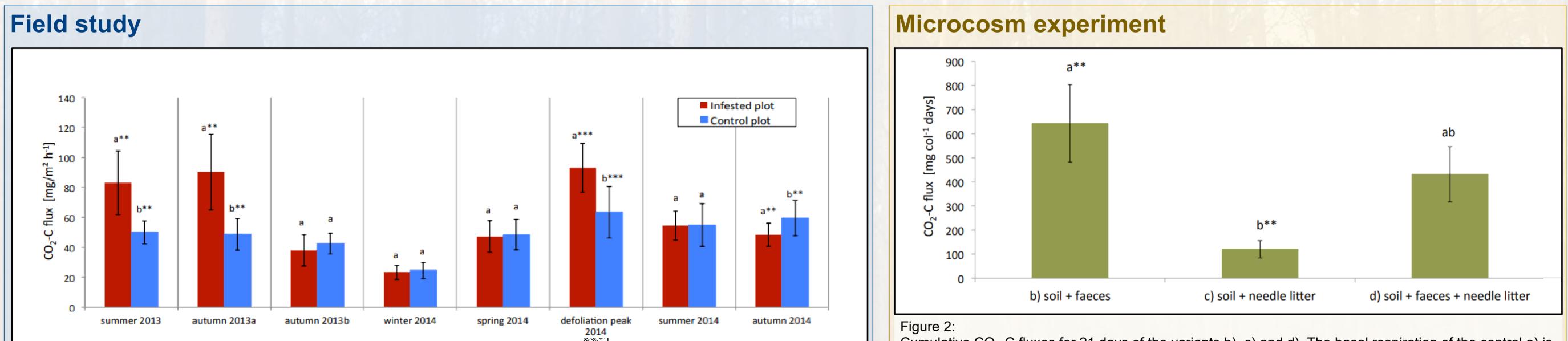
pini L.) on mineral soil and (d) a mixture of needleand frass litter on mineral soil (n=5 per treatment).

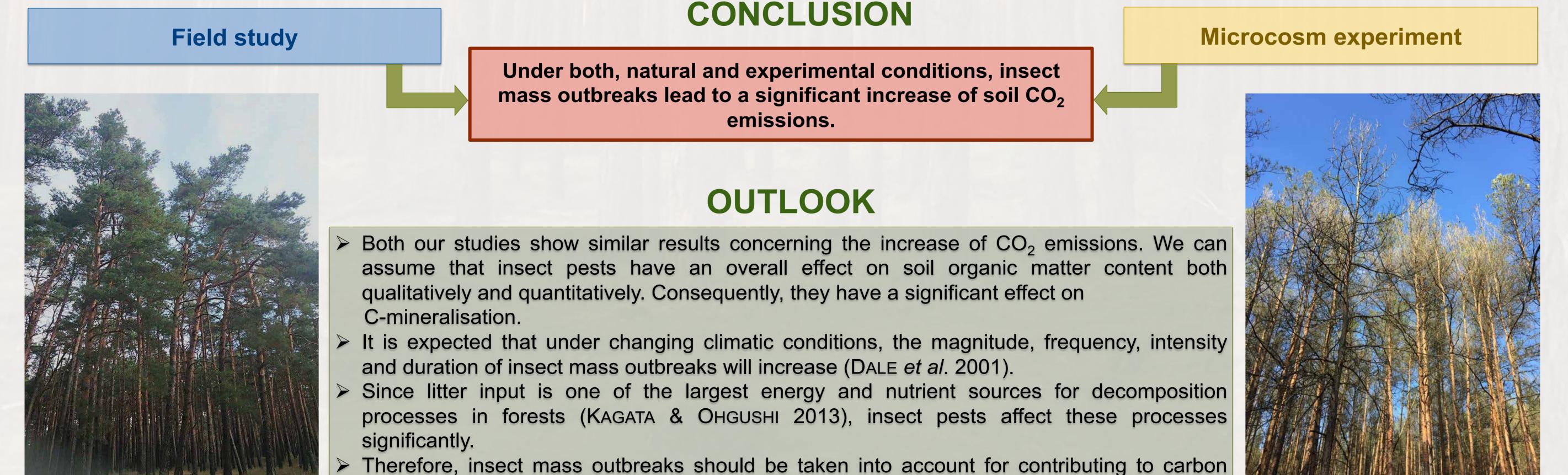
a)

- C-content of treatments b), c) and d) was ٠ equivalent
- Constant measurements during four weeks via continuous-flow-gas-chromatograph

Microcosm glasses (photo: F. Germershausen)

RESULTS




Figure 1: CO₂-C flux on the infested and control plots of the eight sampling dates. Mean values and standard error are shown. Bars with the same letter are not significantly different from each other. significance: *** p <0.001, ** p <0.01, * p <0.05.

- 2013 (population culmination) the infested plots show significantly higher CO_2 emissions (p=0.001 and p=0.003, Mann-Whitney U test)
- The following year (2014) the emissions are significantly higher (p<0.001) only during the peak defoliation period. In autumn, the CO_2 emissions show different results with higher emissions in the non-infested plots (p=0.006)

\rightarrow 32 - 46% higher soil CO₂ emissions on infested forest plots

Cumulative CO_2 -C fluxes for 21 days of the variants b), c) and d). The basal respiration of the control a) is substracted of each variants. Bars with the same letter are not significantly different from each other. significance: *** p <0.001, ** p <0.01, * p <0.05.

- Variant c) has maximal CO_2 emissions one day after the treatment (0.69 mg C/h) whereas b) and d) show maximal emissions five days after the treatment with 9.42 mg C/h for b) and d=4.58 mg C/h for d
- After the maximum the values decreased continuously
- \rightarrow insect faeces causes 81% higher soil CO₂ emissions than needle litter

Non-infested pine forest near Bücknitz, Brandenburg (photo: A. Reinhardt)

- Therefore, insect mass outbreaks should be taken into account for contributing to carbon budgeting in forest ecosystems.

Infested pine forest in Teupitz, Brandenburg (photo: M.Grüning)